PUMDET-2023

Subject : STATISTICS

(Booklet Number)

Duration: 90 Minutes
No. of Questions : 50
Full Marks: 100

INSTRUCTIONS

1. All questions are of objective type having four answer options for each. Only one option is correct. Correct answer will carry full marks 2. In case of incorrect answer or any combination of more than one answer, $1 / 2$ mark will be deducted.
2. Questions must be answered on OMR sheet by darkening the appropriate bubble marked $\mathrm{A}, \mathrm{B}, \mathrm{C}$ or D .
3. Use only Black/Blue ink ball point pen to mark the answer by complete filling up of the respective bubbles.
4. Mark the answers only in the space provided. Do not make any stray mark on the OMR.
5. Write question booklet number and your roll number carefully in the specified locations of the OMR Sheet. Also fill appropriate bubbles.
6. Write your name (in block letter), name of the examination centre and put your signature (as is appeared in Admit Card) in appropriate boxes in the OMR Sheet.
7. The OMR Sheet is liable to become invalid if there is any mistake in filling the correct bubbles for question booklet number/roll number or if there is any discrepancy in the name/signature of the candidate, name of the examination centre. The OMR Sheet may also become invalid due to folding or putting stray marks on it or any damage to it. The consequence of such invalidation due to incorrect marking or careless handling by the candidate will be sole responsibility of candidate.
8. Candidates are not allowed to carry any written or printed material, calculator, pen, docupen, log table, wristwatch, any communication device like mobile phones, bluetooth devices etc. inside the examination hall. Any candidate found with such prohibited items will be reported against and his/her candidature will be summarily cancelled.
9. Rough work must be done on the question booklet itself. Additional blank pages are given in the question booklet for rough work.
10. Hand over the OMR Sheet to the invigilator before leaving the Examination Hall.
11. Candidates are allowed to take the Question Booklet after examination is over.

Signature of the Candidate : \qquad
(as in Admit Card)
Signature of the Invigilator : \qquad

PUMDET-2023

SPACE FOR ROUGH WORK

PUMDET-2023

1. Consider the set $\mathrm{A}=[1,3) \cup[2,4)$ and two real numbers $\mathrm{a}=2, \mathrm{~b}=1$.

Which of the following statements is correct?
(A) b is an interior point of A but not a
(B) a is an interior point of A but not b
(C) Both a and b are interior points of A
(D) None of these two points are interior points of A
2. The series

$$
\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}+2}
$$

(A) converges to 2
(B) converges to 1
(C) is divergent
(D) converges to $\sqrt{2}$
3. The value of

$$
\int_{1}^{2} \int_{1}^{2} \int_{1}^{2} \int_{1}^{2} \frac{x+y+z-w}{x+y+z+w} d x d y d z d w
$$

is
(A) 1
(B) $\frac{1}{3}$
(C) $\frac{1}{4}$
(D) $\frac{1}{2}$
4. For $t>0$, the value of the integral

$$
\int_{0}^{\infty} \mathrm{e}^{-t \mathrm{x}^{2}} d x
$$

is
(A) $\sqrt{\frac{2 \pi}{\mathrm{t}}}$
(B) $\sqrt{\frac{\pi}{2 t}}$
(C) $\sqrt{\frac{\pi}{t}}$
(D) $\frac{1}{2} \sqrt{\frac{\pi}{\mathrm{t}}}$
5. For every positive integer $n \geq 1$, define $d_{n}=$ number of divisors / factors of n, e.g., for $n=8$, there are 4 factors, namely, $1,2,4,8$ so $d_{8}=4$. Then the radius of convergence of the power series $\sum_{n=0}^{\infty} d_{n} x^{n}$ is
(A) 0
(B) 1
(C) 2
(D) infinity

PUMDET-2023

6. Let $U_{1}, U_{2}, \ldots \ldots \ldots$ be i. i. d. Uniform $(0,1)$ random variables.

Then $\lim _{n \rightarrow \infty} P\left(U_{1}+U_{2}+\ldots \ldots .+U_{n} \leq \frac{3}{4} n\right)$
(A) does not exist
(B) exists and equals 1
(C) exists and equals $\frac{1}{2}$
(D) exists and equals 0
7. Suppose $\left\{X_{n}: n \geq 1\right\}$ is a sequence of independent Uniform (0,1) random variables. Let $Y_{n}=\min \left(X_{1}, \ldots \ldots, X_{n}\right)$. Then $n Y_{n}$ converges in distribution to
(A) a $\mathrm{N}(0,1)$ random variable
(B) a $\mathrm{N}(0,2)$ random variable
(C) an exponential random variable with mean 1
(D) an exponential random variable with mean 2
8. Let X be a random variable which is symmetric about zero. Let F be the cumulative distribution function of X . Which of the following statements is always true?
(A) $\mathrm{F}(\mathrm{x})+\mathrm{F}(-\mathrm{x})=1 \forall \mathrm{x} \in \mathbb{R}$
(B) $\mathrm{F}(\mathrm{x})+\mathrm{F}(-\mathrm{x})=0 \forall \mathrm{x} \in \mathbb{R}$
(C) $\mathrm{F}(\mathrm{x})+\mathrm{F}(-\mathrm{x})=1+\mathrm{P}[\mathrm{X}=\mathrm{x}] \forall \mathrm{x} \in \mathbb{R}$
(D) $\mathrm{F}(\mathrm{x})+\mathrm{F}(-\mathrm{x})=1-\mathrm{P}[\mathrm{X}=-\mathrm{x}] \forall \mathrm{x} \in \mathbb{R}$
9. From 10 pairs of shoes in a cupboard, 4 shoes are chosen at random. The probability of selecting at least one of the pairs is
(A) $\frac{97}{323}$
(B) $\frac{95}{323}$
(C) $\frac{224}{323}$
(D) $\frac{99}{323}$
10. For any two events A and B, define $\alpha=P\left(A \cap B^{c}\right), \beta=P(A \cap B)$ and $\gamma=P\left(A^{c}\right)$. Then which of the following relations always holds ?
(A) $\alpha^{2}+\beta^{2}+\gamma^{2}=1$
(B) $\alpha^{2}+\beta^{2}+\gamma^{2} \leq \frac{1}{3}$
(C) $\alpha^{2}+\beta^{2}+\gamma^{2}=\frac{1}{3}$
(D) $\alpha^{2}+\beta^{2}+\gamma^{2} \geq \frac{1}{3}$
11. Suppose X has an exponential density with mean $\theta>0$. Define Y as follows :
$\mathrm{Y}=\mathrm{k}$ if $\mathrm{k} \leq \mathrm{X}<\mathrm{k}+1, \mathrm{k}=0,1,2$, Then the distribution of Y is
(A) binomial
(B) Poisson
(C) geometric
(D) hypergeometric

PUMDET-2023

12. Consider the quadratic equation $x^{2}+2 U x+V=0$ where U and V are chosen independently and randomly from the set $\{1,2,3\}$ with equal probabilities. Then the probability that the equation has both roots real, equals
(A) $\frac{2}{3}$
(B) $\frac{1}{2}$
(C) $\frac{7}{9}$
(D) $\frac{2}{9}$
13. Suppose $\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)$ follows a bivariate normal distribution with $\mathrm{E}\left(\mathrm{X}_{1}\right)=\mathrm{E}\left(\mathrm{X}_{2}\right)=0, \operatorname{Var}\left(\mathrm{X}_{1}\right)=\operatorname{Var}\left(\mathrm{X}_{2}\right)=2$ and $\operatorname{Cov}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)=-1$. If $\Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-y^{2} / 2} d y$, then $P\left[X_{1}-X_{2}>6\right]$ is equal to
(A) $\Phi(-1)$
(B) $\Phi(-3)$
(C) $\Phi(\sqrt{6})$
(D) $\Phi(-\sqrt{6})$
14. Suppose X_{1}, X_{2} and X_{3} are i. i. d. random variables each having a Bernoulli distribution with probability $\frac{1}{2}$. Consider the 2×2 matrix $A=\left(\begin{array}{cc}X_{1} & 0 \\ X_{2} & X_{3}\end{array}\right)$. Then P (A is invertible) equals
(A) 0.20
(B) 0.15
(C) 0.25
(D) 0.75
15. From the 6 letters A, B, C, D, E and F, 3 letters are chosen at random with replacement. What is the probability that either the word BAD or the word CAD can be formed from the chosen letters?
(A) $\frac{1}{72}$
(B) $\frac{1}{36}$
(C) $\frac{1}{18}$
(D) $\frac{1}{126}$
16. Suppose $X_{1}, X_{2}, \ldots, X_{n}$ are i. i. d. Bernoulli(p) random variables, i.e. $P\left(X_{1}=1\right)=p$ and $P\left(X_{1}=0\right)=1-p, 0<p<1$. Let $Y=\prod_{i=1}^{n} X_{i}$ and $Z=\max \left(X_{1}, X_{2}, \ldots, X_{n}\right)$. Then
(A) $\mathrm{Y} \sim \operatorname{Bernoulli}\left(\mathrm{p}^{\mathrm{n}}\right)$ and $\mathrm{Z} \sim \operatorname{Bernoulli}\left((1-\mathrm{p})^{\mathrm{n}}\right)$
(B) $\mathrm{Y} \sim$ Bernoulli $\left((1-\mathrm{p})^{\mathrm{n}}\right)$ and $\mathrm{Z} \sim$ Bernoulli $\left((1-\mathrm{p})^{\mathrm{n}}\right)$
(C) $\mathrm{Y} \sim \operatorname{Bernoulli}\left((1-\mathrm{p})^{\mathrm{n}}\right)$ and $\mathrm{Z} \sim \operatorname{Bernoulli}\left(\mathrm{p}^{\mathrm{n}}\right)$
(D) $\mathrm{Y} \sim$ Bernoulli $\left(\mathrm{p}^{\mathrm{n}}\right)$ and $\mathrm{Z} \sim$ Bernoulli $\left(1-(1-\mathrm{p})^{\mathrm{n}}\right)$

PUMDET-2023

17. Let the distribution function F of a random variable X be given by

$$
F(x)= \begin{cases}0 & \text { if } x<0 \\ \frac{x+1}{2} & \text { if } 0 \leq x<1 \\ 1 & \text { if } 1 \leq x\end{cases}
$$

Then $\mathrm{P}\left(-3<\mathrm{X} \leq \frac{1}{2}\right)$ is
(A) $\frac{1}{2}$
(B) $\frac{3}{4}$
(C) 0
(D) $\frac{1}{6}$
18. Let $\mathrm{B}=\left(\begin{array}{rrrrr}2 & -1 & 3 & 4 & 5 \\ 0 & 1 & -1 & 2 & 3\end{array}\right)$

Then rank $\left(B^{T} B\right)$ is
(A) 2
(B) 5
(C) 1
(D) 3
19. Let $\mathrm{A}=\left(\left(\mathrm{a}_{\mathrm{ij}}\right)\right)$ be an $\mathrm{n} \times \mathrm{n}$ real matrix. Then which of the following is NOT true?
(A) If A is invertible, $\operatorname{tr}\left(\mathrm{A}^{\mathrm{T}} \mathrm{A}\right) \neq 0$
(B) If $\operatorname{tr}\left(\mathrm{A}^{\mathrm{T}} \mathrm{A}\right) \neq 0$, then A is invertible
(C) If $\operatorname{tr}\left(\mathrm{A}^{\mathrm{T}} \mathrm{A}\right)<\mathrm{n}^{2}$, then $\left|\mathrm{a}_{\mathrm{ij}}\right|<1$ for some i, j
(D) If $\operatorname{tr}\left(A^{T} A\right)=0$, then A is the zero matrix
20. The inverse of the matrix

$$
A=\left(\begin{array}{cccc}
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 & 0 \\
\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & -\frac{2}{\sqrt{6}} & 0 \\
\frac{1}{\sqrt{12}} & \frac{1}{\sqrt{12}} & \frac{1}{\sqrt{12}} & \frac{-3}{\sqrt{12}}
\end{array}\right)
$$

(A) does not exist
(B) \quad is A^{T}
(C) is $\left(\mathrm{A}^{\mathrm{T}}\right)^{2}$
(D) is A^{2}

PUMDET-2023

21. Let X_{1}, X_{2} and X_{3} be independently and identically distributed Bernoulli(p) random variables. Which of the following is NOT a sufficient statistic for p ?
(A) $\left(\mathrm{X}_{1}, \mathrm{X}_{1}+\mathrm{X}_{2}, \mathrm{X}_{1}+\mathrm{X}_{2}+2 \mathrm{X}_{3}\right)$
(B) $\left(\mathrm{X}_{1}, \mathrm{X}_{1}+\mathrm{X}_{2}, \mathrm{X}_{3}\right)$
(C) $\left(\mathrm{X}_{1}+\mathrm{X}_{3}, \mathrm{X}_{1}+\mathrm{X}_{2}+2 \mathrm{X}_{3}\right)$
(D) $\mathrm{X}_{1}+17 \mathrm{X}_{2}+\mathrm{X}_{3}$
22. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from Uniform $(\theta, \theta+1)$. Then which of the following is NOT an MLE of θ ?
(A) $\frac{\mathrm{X}_{(1)}+\mathrm{X}_{(\mathrm{n})}-1}{2}$
(B) $\frac{2 \mathrm{X}_{(1)}+3 \mathrm{X}_{(\mathrm{n})}-3}{5}$
(C) $\frac{\mathrm{X}_{(1)}+\mathrm{X}_{(\mathrm{n})}+1}{2}$
(D) $\frac{3 \mathrm{X}_{(1)}+2 \mathrm{X}_{(\mathrm{n})}-2}{5}$
23. Let Y_{1}, Y_{2}, Y_{3} and Y_{4} be uncorrelated random variables with common unknown variance σ^{2} and expectations given by

$$
\begin{aligned}
& \mathrm{E}\left(\mathrm{Y}_{1}\right)=\beta_{1}+\beta_{2}+\beta_{3}=\mathrm{E}\left(\mathrm{Y}_{2}\right), \\
& \mathrm{E}\left(\mathrm{Y}_{3}\right)=\beta_{1}-\beta_{2}=\mathrm{E}\left(\mathrm{Y}_{4}\right),
\end{aligned}
$$

where β_{1}, β_{2} and β_{3} are unknown parameters. Define $e_{1}=\frac{1}{\sqrt{2}}\left(Y_{1}-Y_{2}\right)$ and $e_{2}=\frac{1}{\sqrt{2}}\left(Y_{3}-Y_{4}\right)$. An unbiased estimator of σ^{2} is
(A) $\frac{1}{2}\left(\mathrm{e}_{1}{ }^{2}+\mathrm{e}_{2}{ }^{2}\right)$
(B) $\frac{1}{2}\left(\mathrm{e}_{1}{ }^{2}-\mathrm{e}_{2}{ }^{2}\right)$
(C) $\frac{1}{4}\left(\mathrm{e}_{1}^{2}+\mathrm{e}_{2}{ }^{2}\right)$
(D) $\frac{1}{4}\left(\mathrm{e}_{1}^{2}-\mathrm{e}_{2}^{2}\right)$
24. Let X and Y follow χ^{2}-distributions with the same degrees of freedom, independently. Then $E\left(\frac{X}{X+Y}\right)$ is
(A) $\frac{1}{4}$
(B) $\frac{1}{2}$
(C) $\frac{3}{4}$
(D) 1
25. Let $X_{1}, X_{2}, \ldots, X_{10}$ be a random sample from $\operatorname{Normal}(0,1)$. Let N be the number of X_{i} 's less than or equal to 0 . Then $\operatorname{Var}(\mathrm{N})$ is
(A) 10
(B) 5
(C) 2.5
(D) 1.25

PUMDET-2023

26. Let X be a random variable such that $E(X)=E\left(X^{2}\right)=1$. Then $E\left(X^{3}\right)$ is
(A) 0
(B) 1
(C) 2
(D) 3
27. Let $X_{1}, X_{2}, \ldots, X_{n} \underset{\sim}{i i d} N(\mu, 1)$. Let $\bar{X}=(1 / n) \sum_{i=1}^{n} X_{i}$. Then $\operatorname{Var}\left[E\left(X_{1}+X_{2} \mid \bar{X}\right)\right]$ is
(A) $\frac{1}{\mathrm{n}}$
(B) $\frac{2}{\mathrm{n}}$
(C) $\frac{3}{\mathrm{n}}$
(D) $\frac{4}{\mathrm{n}}$
28. Let $X_{1}, X_{2}, \ldots, X_{10} \stackrel{i d}{\sim}$ Cauchy $(0,1)$. Let R_{i} be the rank of X_{i} for $i=1,2,3, \ldots, 10$. Then
(A) $\mathrm{E}\left(\mathrm{R}_{10}-\mathrm{R}_{1}\right)=0$
(B) $\mathrm{E}\left(\mathrm{R}_{10}-\mathrm{R}_{1}\right)=9$
(C) $\mathrm{E}\left(\mathrm{R}_{10}-\mathrm{R}_{1}\right)=\frac{10}{\pi}$
(D) $\mathrm{E}\left(\mathrm{R}_{10}-\mathrm{R}_{1}\right)$ does not exist
29. Consider the problem of testing
$\mathrm{H}_{0}: \mathrm{X} \sim$ Poisson (2) vs. $\mathrm{H}_{1}: \mathrm{X} \sim \operatorname{Exp}(2)$.
We reject H_{0} against H_{1} based on a single observation x if and only if x is not a nonnegative integer. Then
(A) $\mathrm{P}($ Type -I error $)=0.5$ and $\mathrm{P}($ Type -II error $)=0.5$
(B) $\mathrm{P}($ Type -I error $)=0$ and $\mathrm{P}($ Type $-I I$ error $)=0$
(C) $\mathrm{P}($ Type -I error $)=0$ and $\mathrm{P}($ Type -II error $)=0.5$
(D) $\mathrm{P}($ Type -I error $)=1$ and $\mathrm{P}($ Type -II error $)=0.5$
30. Let $x_{1}=3, x_{2}=4, x_{3}=3.5, x_{4}=2.5$ be the observed values of a random sample from the probability density function $f(x \mid \theta)=\frac{1}{2}\left[\frac{1}{\theta} e^{-\frac{x}{\theta}}+e^{-x}\right], x>0, \theta>0$. Then the method of moment estimate of θ is
(A) 3.5
(B) 4
(C) 5.5
(D) 6.5
31. Suppose $X_{1}, X_{2}, ., X_{n}$ are independent random variables and $X_{k} \sim N\left(0, k \sigma^{2}\right), k=1,2, \ldots, n$ where σ^{2} is unknown. The maximum likelihood estimator for σ^{2} is
(A) $\frac{1}{\mathrm{n}} \sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{X}_{\mathrm{k}}{ }^{2}$
(B) $\frac{1}{\mathrm{n}} \sum_{\mathrm{k}=1}^{\mathrm{n}}\left(\mathrm{X}_{\mathrm{k}}-\overline{\mathrm{X}_{\mathrm{n}}}\right)^{2}$
(C) $\frac{1}{\mathrm{n}} \sum_{\mathrm{k}=1}^{\mathrm{n}} \frac{\mathrm{X}_{\mathrm{k}}{ }^{2}}{\mathrm{k}}$
(D) $\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{X}_{\mathrm{k}}^{2} / \sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{k}$

PUMDET-2023

32. Suppose $\mathrm{X}=\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}\right)^{\mathrm{T}}$ has $\mathrm{N}_{3}(\mu, \Sigma)$ distribution where $\mu=(-3,1,4)^{\mathrm{T}}$ and $\Sigma=\left(\begin{array}{lll}1 & 2 & 0 \\ 2 & 5 & 0 \\ 0 & 0 & 2\end{array}\right)$. Then which of the following pairs of random variables are NOT independent?
(A) X_{2} and X_{3}
(B) $\frac{X_{1}+X_{2}}{2}$ and X_{3}
(C) X_{2} and $\mathrm{X}_{2}-\frac{5}{2} \mathrm{X}_{1}-\mathrm{X}_{3}$
(D) X_{1} and $\frac{\mathrm{X}_{2}+\mathrm{X}_{3}}{2}$
33. Let the random variable ' X ' have binomial distribution with parameters 3 and θ. A test of hypothesis $\mathrm{H}_{0}: \theta=\frac{3}{4}$ against $\mathrm{H}_{1}: \theta=\frac{1}{4}$ rejects H_{0} iff $\mathrm{X} \leq 1$. Then the test has
(A) size $=\frac{5}{32}$, power $=\frac{27}{32}$
(B) size $=\frac{5}{32}$, power $=\frac{18}{32}$
(C) size $=\frac{15}{32}$, power $=\frac{27}{32}$
(D) size $=\frac{1}{32}$, power $=\frac{31}{32}$
34. The name of the header file to which puts () belongs is
(A) math.h
(B) stdio.h
(C) iomanip.h
(D) stdlib.h
35. Let X_{1} and X_{2} be independently and identically distributed as normal with mean θ and variance unity. Then $E\left(\bar{X} \mid X_{1}=1\right)$ will be
(A) $\frac{\theta+1}{2}$
(B) $\frac{\theta-1}{2}$
(C) $\frac{\theta}{2}$
(D) $\frac{\theta}{\sqrt{2}}$
36. The diagnostic rating scale based on a mammogram to detect breast cancer as definitely normal, probably normal equivocal, probably abnormal, definitely abnormal uses
(A) Ratio scale
(B) Interval scale
(C) Nominal scale
(D) Ordinal scale
37. For a given bivariate data set $\left(x_{i}, y_{i}\right), i=1,2, \ldots, n$; the squared correlation coefficient $\left(r^{2}\right)$ between x^{2} and y is found to be 1 . Which of the following statement is most appropriate?
(A) In the (x, y) scatter diagram, all points lie on a straight line.
(B) In the (x, y) scatter diagram, all points lie on a curve $y=x^{2}$.
(C) In the (x, y) scatter diagram, all points lie on a curve $y=a+b x^{2}, a>0, b>0$.
(D) In the (x, y) scatter diagram, all points lie on a curve $y=a+b x^{2}$, a and b are any real numbers.

PUMDET-2023

38. Suppose your data produces the regression of y on x as $y=10+3 x$. Scale y by multiplying by 0.9 and do not scale x. The new intercept and slope estimates will be respectively
(A) 10,3
(B) 9,3
(C) 9, 2.7
(D) 11.11, 3.33
39. The data on annual income is summarised in the following frequency distribution table :

Annual Income (in '000 ₹)	$80-100$	$100-120$	$120-140$	$140-160$	$160-180$
No. of families	5	10	15	10	5

The value of m_{3} (third order central moment) comes out as
(A) 2.25
(B) 0
(C) -2.25
(D) 1
40. For a set of 8 observations if 3 and 23 are the minimum and maximum values respectively, then the minimum and maximum possible values of the variance are respectively
(A) 25 and 100
(B) 50 and 150
(C) 20 and 80
(D) 50 and 80
41. Suppose a finite population consists of N units numbered $1,2, \ldots ., N$. Two units are drawn using SRSWOR and let (X, Y) be the numbers of the sampled units. If $\mathrm{Z}=\min (\mathrm{X}, \mathrm{Y})$, then $E(Z)$ is
(A) $\frac{\mathrm{N}-1}{6}$
(B) $\frac{\mathrm{N}}{6}$
(C) $\frac{\mathrm{N}(\mathrm{N}+1)}{6}$
(D) $\frac{\mathrm{N}+1}{6}$
42. Consider the following model
$\left(y_{1}, y_{2}, y_{3}, y_{4}\right)^{\mathrm{T}}=(1,1,1,0)^{\mathrm{T}} \beta_{1}+(1,1,0,1)^{\mathrm{T}} \beta_{2}+\left(e_{1}, e_{2}, e_{3}, e_{4}\right)^{\mathrm{T}}$,
$\left(e_{1}, e_{2}, e_{3}, e_{4}\right)^{T} \sim N_{4}\left(0, \sigma^{2} I_{4}\right)$
Then among the following, which is most preferable for deriving a confidence interval for $\beta_{1}-\beta_{2}$?
(A) $y_{3}-y_{4}$
(B) $y_{3}-y_{4}+y_{1}-y_{2}$
(C) $y_{1}-2 y_{2}+y_{3}$
(D) $y_{1}-y_{2}$
43. In a 2^{2} factorial experiment the main effect A is given by
(A) $\frac{1}{2}\{(\mathrm{ab})+(\mathrm{a})-(\mathrm{b})-(\mathrm{l})\}$
(B) $\frac{1}{2}\{(\mathrm{ab})-(\mathrm{a})+(\mathrm{b})-(\mathrm{l})\}$
(C) $\frac{1}{2}\{(\mathrm{ab})+(\mathrm{a})+(\mathrm{b})+(\mathrm{l})\}$
(D) $\frac{1}{2}\{(\mathrm{ab})-(\mathrm{a})-(\mathrm{b})+(1)\}$

PUMDET-2023

44. If the degrees of freedom for the error sum of squares in a Latin square design is 6 , then the order of the design is
(A) 3×3
(B) 4×4
(C) 5×5
(D) 6×6
45. In a randomized block design with 4 blocks and 5 treatments having one missing value, the error degrees of freedom will be
(A) 12
(B) 11
(C) 10
(D) 9
46. A simple random sample of size 3 is drawn with replacement from a population of size $\mathrm{N}(>7)$. The probability that the sample contains exactly 2 distinct units is
(A) $1 / \mathrm{N}^{2}$
(B) $(\mathrm{N}-1)(\mathrm{N}-2) / \mathrm{N}^{2}$
(C) $3(\mathrm{~N}-1) / \mathrm{N}^{2}$
(D) $(\mathrm{N}-1) / \mathrm{N}$
47. Which of the following is NOT a division of the Central Statistics Office (CSO) ?
(A) National Accounts Division
(B) Demography Division
(C) Social Statistics Division
(D) Economic Statistics Division
48. Given that the Total Fertility Rate (TFR) is 2620 per thousand and sex-ratio at birth is 1 male to 1 female, then the Gross Reproduction Rate (GRR) will be
(A) 1.000
(B) 1.310
(C) 2.620
(D) 5.240
49. How many moving average values are feasible when 3-year moving averages are calculated from the values for the years 2010 to 2022 ?
(A) 10
(B) 11
(C) 12
(D) 13
50. If μ and σ are the process mean and standard deviation respectively, then the control limits $\mu \pm 3 \sigma$ are known as
(A) modified control limits
(B) natural control limits
(C) specified control limits
(D) artificial control limits

PUMDET-2023

SPACE FOR ROUGH WORK

