KHANA

No.:

This Booklet contains 24 pages.

Do not open this Test Booklet until you are asked to do so.

Important Instructions:

- The Answer Sheet is inside this Test Booklet. When you are directed to open the Test Booklet, take out the
 Answer Sheet and fill in the particulars on side-1 and side-2 carefully with blue/black ball point pen
 only.
- The test is of 3 hours duration and Test Booklet contains 180 questions. Each question carries 4 marks.
 For each correct response, the candidate will get 4 marks. For each incorrect response, one mark will be deducted from the total scores. The maximum marks are 720.
- 3. Use Blue/Black Ball Point Pen only for writing particulars on this page/marking responses.
- 4. Rough work is to be done on the space provided for this purpose in the Test Booklet only.
- On completion of the test, the candidate must hand over the Answer Sheet to the invigilator before leaving the Room/Hall. The candidates are allowed to take away this Test Booklet with them.
- 6. The CODE for this Booklet is **H6.** Make sure that the CODE printed on **Side-2** of the Answer Sheet is the same as that on this Test Booklet. In case of discrepancy, the candidate should immediately report the matter to the Invigilator for replacement of both the Test Booklet and the Answer Sheet.
- The candidates should ensure that the Answer Sheet is not folded. Do not make any stray marks on the Answer Sheet. Do not write your Roll No. anywhere else except in the specified space in the Test Booklet/ Answer Sheet.
- 8. Use of white fluid for correction is NOT permissible on the Answer Sheet.
- Each candidate must show on demand his/her Admit Card to the Invigilator.
- 10. No candidate, without special permission of the Superintendent or Invigilator, would leave his/her seat.
- 11. The candidates should not leave the Examination Hall without handing over their Answer Sheet to the Invigilator on duty and sign the Attendance Sheet twice. Cases where a candidate has not signed the Attendance Sheet second time will be deemed not to have handed over the Answer Sheet and dealt with as an unfair means case.
- 12. Use of Electronic/Manual Calculator is prohibited.
- The candidates are governed by all Rules and Regulations of the examination with regard to their conduct in the Examination Hall. All cases of unfair means will be dealt with as per Rules and Regulations of this examination
- 14. No part of the Test Booklet and Answer Sheet shall be detached under any circumstances.
- The candidates will write the Correct Test Booklet Code as given in the Test Booklet/Answer Sheet in the Attendance Sheet.

Name of the Car	ndidate (in Capitals) :		
Roll Number	: in figures		
	: in words		
Centre of Exam	ination (in Capitals):		
Candidate's Sig	nature :	Invigilator's Signature :	
Facsimile signa	ture stamp of		
Centre Superint	endent:		

Н6		3	2		
1.	Whie algae	ch of the following pairs is of unicellular e?	7.		infectious stage of <i>Plasmodium</i> that enters human body is:
	(1)	Chlorella and Spirulina		(1)	Male gametocytes
	(2)	Laminaria and Sargassum		(2)	Trophozoites
	(3)	Gelidium and Gracilaria		(3)	Sporozoites
	(4)	Anabaena and Volvox		(4)	Female gametocytes
2.	Gobl	let cells of alimentary canal are modified	8.		ct the correct events that occur during iration.
	from	The Control of the Co		(a)	Contraction of diaphragm
	(1)	Compound epithelial cells		(b)	Contraction of external inter-costal muscles
	(2)	Squamous epithelial cells		(c)	Pulmonary volume decreases
	(3)	Columnar epithelial cells			
	(4)	Chondrocytes		(d)	Intra pulmonary pressure increases
(22)				(1) (2)	only (d) (a) and (b)
3.		enzyme enterokinase helps in conversion of:		(3)	(a) and (b) (c) and (d)
	(1)	pepsinogen into pepsin		(4)	(a), (b) and (d)
	(2)	protein into polypeptides		(4)	(a), (b) and (d)
	(3)	trypsinogen into trypsin	9.	The	process of growth is maximum during:
	(4)	caseinogen into casein		(1)	Dormancy
4.	Whi	ch one of the following is the most abundant		(2)	Logphase
4.		ein in the animals?		(3)	Lagphase
	(1)	Insulin		(4)	Senescence
	(2)	Haemoglobin	10.	The	sequence that controls the copy number of the
	(3)	Collagen		linke	ed DNA in the vector, is termed:
	(4)	Lectin		(1)	Recognition site
	_			(2)	Selectable marker
5.		otton variety that was developed by the duction of toxin gene of <i>Bacillus thuringiensis</i>		(3)	Ori site
		is resistant to:		(4)	Palindromic sequence
	(1)	Insect predators	11.		plant parts which consist of two generations -
	(2)	Insect pests		one	within the other:
	(3)	Fungal diseases		(a)	Pollen grains inside the anther
	(4)	Plant nematodes		(b)	Germinated pollen grain with two male gametes
6.	Men	many true breeding pea plant varieties did del select as pairs, which were similar except		(c)	Seed inside the fruit
		ne character with contrasting traits?		(d)	Embryo sac inside the ovule
	(1)	8		(1)	(a) and (d)
	(2)	4		(2)	(a) only

(3)

(4)

2

14

(a) only

(a), (b) and (c)

(c) and (d)

(3)

(4)

- 12. Which of the following statements is correct?
 - (1) Adenine does not pair with thymine.
 - Adenine pairs with thymine through two H-bonds.
 - Adenine pairs with thymine through one H-bond.
 - (4) Adenine pairs with thymine through three H-bonds.
- 13. In light reaction, plastoquinone facilitates the transfer of electrons from :
 - (1) PS-I to ATP synthase
 - (2) PS-II to Cytb₆f complex
 - (3) Cytb₆f complex to PS-I
 - (4) PS-I to NADP+
- 14. Which of the following statements about inclusion bodies is **incorrect**?
 - These represent reserve material in cytoplasm.
 - (2) They are not bound by any membrane.
 - (3) These are involved in ingestion of food particles.
 - (4) They lie free in the cytoplasm.
- 15. Cuboidal epithelium with brush border of microvilli is found in:
 - (1) eustachian tube
 - (2) lining of intestine
 - (3) ducts of salivary glands
 - (4) proximal convoluted tubule of nephron
- Match the following columns and select the correct option.

	Column - I	I		Column - II	
(a)		tridiur	n	(i)	Cyclosporin-A
	buty	licum			
(b)		hodern		(ii)	Butyric Acid
	polys	sporun	n		
(c)	Mon	ascus		(iii)	Citric Acid
	purp	ureus			
(d)	Aspe	rgillus	sniger	(iv)	Blood cholesterol
					lowering agent
	(a)	(b)	(c)	(d)	
(1)	(iv)	(iii)	(ii)	(i)	
(2)	(iii)	(iv)	(ii)	(i)	
(3)	(ii)	(i)	(iv)	(iii)	
(4)	(i)	(ii)	(iv)	(iii)	

- 17. Match the following concerning essential elements and their functions in plants:
 - (a) Iron (i) Photolysis of water
 - (b) Zinc (ii) Pollen germination
 - (c) Boron (iii) Required for chlorophyll biosynthesis
 - (d) Manganese (iv) IAA biosynthesis

Select the correct option:

- (a) (b) (c) (d)
- (1) (iv) (i) (ii) (iii)
- (2) (ii) (i) (iv) (iii)
- (3) (iv) (iii) (ii) (i)
- (4) (iii) (iv) (ii) (i)
- 18. Snow-blindness in Antarctic region is due to :
 - (1) Damage to retina caused by infra-red rays
 - (2) Freezing of fluids in the eye by low temperature
 - (3) Inflammation of cornea due to high dose of UV-B radiation
 - (4) High reflection of light from snow
- Match the following columns and select the correct option.

	Colu	ımn -	I		Column - II
(a)	Pituitary gland			(i)	Grave's disease
(b)	Thyroid gland			(ii)	Diabetes mellitus
(c)	Adrenal gland			(iii)	Diabetes insipidus
(d)	Pancreas			(iv)	Addison's disease
	(a)	(b)	(c)	(d)	
(1)	(ii)	(i)	(iv)	(iii)	
(2)	(iv)	(iii)	(i)	(ii)	
(3)	(iii)	(ii)	(i)	(iv)	
(4)	(iii)	(i)	(iv)	(ii)	

- **20.** Which of the following is **not** an inhibitory substance governing seed dormancy?
 - (1) Para-ascorbic acid
 - (2) Gibberellic acid
 - (3) Abscisic acid
 - (4) Phenolic acid

diuresis?

Decrease in secretion of renin by JG cells

undersecretion of ADH

vasoconstriction

tubules due to aldosterone

More water reabsorption due to

Reabsorption of Na+ and water from renal

Atrial natriuretic factor causes

(1)

(2)

(3)

(4)

Identify the basic amino acid from the following.

25.

(1)

(2)

(3)

(4)

Valine

Lysine

Tyrosine

Glutamic Acid

5 H6

- 32. Select the correct statement.
 - (1) Insulin is associated with hyperglycemia.
 - (2) Glucocorticoids stimulate gluconeogenesis.
 - (3) Glucagon is associated with hypoglycemia.
 - Insulin acts on pancreatic cells and adipocytes.
- 33. Which is the important site of formation of glycoproteins and glycolipids in eukaryotic cells?
 - (1) Polysomes
 - (2) Endoplasmic reticulum
 - (3) Peroxisomes
 - (4) Golgi bodies
- 34. Name the plant growth regulator which upon spraying on sugarcane crop, increases the length of stem, thus increasing the yield of sugarcane crop.
 - (1) Abscisic acid
 - (2) Cytokinin
 - (3) Gibberellin
 - (4) Ethylene
- 35. Some dividing cells exit the cell cycle and enter vegetative inactive stage. This is called quiescent stage (G₀). This process occurs at the end of:
 - (1) G₂ phase
 - (2) M phase
 - (3) G₁ phase
 - (4) Sphase
- 36. Flippers of Penguins and Dolphins are examples of:
 - (1) Natural selection
 - (2) Adaptive radiation
 - (3) Convergent evolution
 - (4) Industrial melanism

- 37. The transverse section of a plant shows following anatomical features:
 - Large number of scattered vascular bundles surrounded by bundle sheath.
 - Large conspicuous parenchymatous ground tissue.
 - (c) Vascular bundles conjoint and closed.
 - (d) Phloem parenchyma absent.

Identify the category of plant and its part:

- (1) Dicotyledonous root
- (2) Monocotyledonous stem
- (3) Monocotyledonous root
- (4) Dicotyledonous stem
- 38. In water hyacinth and water lily, pollination takes place by :
 - (1) insects and water
 - (2) insects or wind
 - (3) water currents only
 - (4) wind and water
- Identify the wrong statement with reference to immunity.
 - Foetus receives some antibodies from mother, it is an example for passive immunity.
 - (2) When exposed to antigen (living or dead) antibodies are produced in the host's body. It is called "Active immunity".
 - (3) When ready-made antibodies are directly given, it is called "Passive immunity".
 - (4) Active immunity is quick and gives full response.
- 40. Which of the following is put into Anaerobic sludge digester for further sewage treatment?
 - (1) Activated sludge
 - (2) Primary sludge
 - (3) Floating debris
 - (4) Effluents of primary treatment

(2)

(3)

(4)

(2)

(3)

(4)

(ii)

(iii)

(iv)

(iii)

(i)

(ii)

(i)

(iv)

(i)

(iv)

(ii)

(iii)

Repolarisation of auricles

Depolarisation of auricles

Depolarisation of ventricles

7 51. Meiotic division of the secondary oocyte is 55. Dissolution of the synaptonemal complex occurs completed: during: At the time of fusion of a sperm with an (1)(1) Leptotene ovum (2)Pachytene (2)Prior to ovulation (3)Zygotene (3)At the time of copulation (4) Diplotene (4) After zygote formation 52. Match the following columns and select the Which of the following is **correct** about viroids? correct option. They have free DNA without protein coat. (1) Column - II Column - I (2)They have RNA with protein coat. Floating Ribs Located between (a) (i) They have free RNA without protein coat. (3)second and (4) They have DNA with protein coat. seventh ribs 57. (b) Acromion Head of the Embryological support for evolution was (ii) disapproved by: Humerus (1) Oparin (c) Scapula (iii) Clavicle (2)Karl Ernst von Baer (d) Glenoid cavity Do not connect (iv) (3)Alfred Wallace with the sternum (4) Charles Darwin (a) (b) (c) (d) (1) (iv) (iii) (i) (ii) 58. The specific palindromic sequence which is (2)(i) (iii) (ii) (iv) recognized by EcoRI is: (3)(i) (iii) (ii) (iv) 5' - GGATCC - 3' (1) (4)(iii) (ii) (iv) (i) 3' - CCTAGG - 5' 53. Match the following diseases with the causative 5' - GAATTC - 3' (2)organism and select the correct option. 3' - CTTAAG - 5' Column - II Column - I (3)5' - GGAACC - 3' Wuchereria (a) Typhoid (i) 3' - CCTTGG - 5' (b) Pneumonia (ii) Plasmodium 5' - CTTAAG - 3' (4) **Filariasis** (iii) Salmonella (c) 3' - GAATTC - 5' (d) Malaria (iv) Haemophilus (a) (b) (d) (c) 59. Match the organism with its use in biotechnology. (1)(iv) (i) (ii) (iii) Bacillus Cloning vector (a) (i) (2)(iii) (iv) (i) (ii) thuringiensis (3)(iii) (iv) (i) (ii) (iv) (4)(ii) (i) (iii) Construction of (b) Thermus (ii) 54. Match the following columns and select the first rDNA aquaticus correct option. molecule Column - II Column - I (c) Agrobacterium (iii) **DNA** polymerase (a) Gregarious, polyphagous (i) Asterias tumefaciens pest (b) Adult with radial (ii) Scorpion (d) Salmonella (iv) Cry proteins symmetry and larva typhimurium with bilateral symmetry Book lungs Ctenoplana Select the **correct** option from the following: (c) (iii) (d) Biolum in escence Locusta (iv) (a) (b) (c) (d) (a) (b) (c) (d) (iii) (iv) (i) (ii) (1) (1) (ii) (i) (iii) (iv) (2)(iv) (i) (ii) (iii) (2)(i) (iii) (ii) (iv) (3)(iv) (iii) (i) (ii)

(4)

(iii)

(ii)

(iv)

(i)

(3)

(4)

(iv)

(iii)

(i)

(ii)

(ii)

(i)

(iii)

(iv)

- **H6** 60. Which of the following statements are true for the phylum-Chordata? In Urochordata notochord extends from head to tail and it is present throughout their life. In Vertebrata notochord is present during (b) the embryonic period only.

 - (c) Central nervous system is dorsal and hollow.
 - (d) Chordata is divided into 3 subphyla: Hemichordata, Tunicata and Cephalochordata.
 - (1) (b) and (c)
 - (2)(d) and (c)
 - (3)(c) and (a)
 - (4) (a) and (b)
- Montreal protocol was signed in 1987 for control 61.
 - (1) Disposal of e-wastes
 - Transport of Genetically modified organisms (2)from one country to another
 - Emission of ozone depleting substances
 - (4) Release of Green House gases
- If the distance between two consecutive base pairs is 0.34 nm and the total number of base pairs of a DNA double helix in a typical mammalian cell is 6.6×10^9 bp, then the length of the DNA is approximately:
 - 2.7 meters (1)
 - (2)2.0 meters
 - (3) 2.5 meters
 - (4) 2.2 meters
- 63. Match the following columns and select the correct option.

Colu	ımn -	I		Column - II
Placenta			(i)	Androgens
Zona pellucida			(ii)	Human Chorionic Gonadotropin (hCG)
Bulbo-urethral glands			(iii)	Layer of the ovum
Leydig cells		(iv)	Lubrication of the Penis	
(a)	(b)	(c)	(d)	
(ii)	(iii)	(iv)	(i)	
(iv)	(iii)	(i)	(ii)	
(i)	(iv)	(ii)	(iii)	
(iii)	(ii)	(iv)	(i)	
	Place Zona Bulb gland Leyd (a) (ii) (iv) (i)	Placenta Zona pelluc Bulbo-uret glands Leydig cell (a) (b) (ii) (iii) (iv) (iii) (i) (iv)	Zona pellucida Bulbo-urethral glands Leydig cells (a) (b) (c) (ii) (iii) (iv) (iv) (iii) (i) (i) (iv) (iii)	Placenta (i) Zona pellucida (ii) Bulbo-urethral (iii) glands Leydig cells (iv) (a) (b) (c) (d) (ii) (iii) (iv) (i) (iv) (iii) (i) (ii) (i) (iv) (ii) (iii)

- 64. Which of the following regions of the globe exhibits highest species diversity?
 - Amazon forests
 - (2)Western Ghats of India
 - (3) Madagascar
 - (4) Himalayas
- Match the following columns and select the correct option.

	Colu	ımn -	I		Column - II
(a)	6 - 15 pairs of gill slits			(i)	Trygon
(b)		Heterocercal caudal fin			Cyclostomes
(c)	Air E	Air Bladder			Chondrichthyes
(d)	Poise	on stin	g	(iv)	Osteichthyes
	(a)	(b)	(c)	(d)	
(1)	(i)	(iv)	(iii)	(ii)	
(2)	(ii)	(iii)	(iv)	(i)	
(3)	(iii)	(iv)	(i)	(ii)	
(4)	(iv)	(ii)	(iii)	(i)	

- 66. Which of the following is not an attribute of a population?
 - Species interaction (1)
 - (2)Sex ratio
 - (3) Natality
 - (4) Mortality
- 67. Match the following columns and select the correct option.

	Colu	ımn -	I		Column - II
(a)	Bt co	otton		(i)	Gene therapy
(b)	dean	nosine ninase iency		(ii)	Cellular defence
(c)	RNA	i		(iii)	Detection of HIV infection
(d)	PCR			(iv)	Bacillus thuringiensis
	(a)	(b)	(c)	(d)	
(1)	(i)	(ii)	(iii)	(iv)	
(2)	(iv)	(i)	(ii)	(iii)	
(3)	(iii)	(ii)	(i)	(iv)	
(4)	(ii)	(iii)	(iv)	(i)	

- **68.** Which of the following refer to **correct** example(s) of organisms which have evolved due to changes in environment brought about by anthropogenic action?
 - (a) Darwin's Finches of Galapagos islands.
 - (b) Herbicide resistant weeds.
 - (c) Drug resistant eukaryotes.
 - (d) Man-created breeds of domesticated animals like dogs.
 - (1) only (d)
 - (2) only (a)
 - (3) (a) and (c)
 - (4) (b), (c) and (d)
- 69. In which of the following techniques, the embryos are transferred to assist those females who cannot conceive?
 - (1) GIFT and ICSI
 - (2) ZIFT and IUT
 - (3) GIFT and ZIFT
 - (4) ICSI and ZIFT
- 70. Experimental verification of the chromosomal theory of inheritance was done by :
 - (1) Morgan
 - (2) Mendel
 - (3) Sutton
 - (4) Boveri
- 71. The oxygenation activity of RuBisCo enzyme in photorespiration leads to the formation of:
 - $\begin{array}{ll} \hbox{(1)} & 1 \, \hbox{molecule of 4-C compound and 1 molecule} \\ & \hbox{of 2-C compound} \end{array}$
 - (2) 2 molecules of 3-C compound
 - (3) 1 molecule of 3-C compound
 - (4) 1 molecule of 6-C compound
- 72. If the head of cockroach is removed, it may live for few days because:
 - the head holds a 1/3rd of a nervous system while the rest is situated along the dorsal part of its body.
 - (2) the supra-oesophageal ganglia of the cockroach are situated in ventral part of abdomen.
 - (3) the cockroach does not have nervous system.
 - (4) the head holds a small proportion of a nervous system while the rest is situated along the ventral part of its body.

- 73. Select the correct match.
 - Thalassemia Xlinked
 - (2) Haemophilia Ylinked
 - (3) Phenylketonuria Autosomal dominant trait
 - (4) Sickle cell anaemia Autosomal recessive trait, chromosome-11
- 74. Strobili or cones are found in :
 - (1) Equisetum
 - (2) Salvinia
 - (3) Pteris
 - (4) Marchantia
- Match the following columns and select the correct option.

	Col	umn -	I		Column - II
(a)	Eosi	nophil	3	(i)	Immune response
(b)	Base	phils		(ii)	Phagocytosis
(c)	Neu	trophil	s	(iii)	Release
					histaminase,
					destructive
					enzymes
(d)	Lym	phocyt	es	(iv)	Release granules
					containing
					histamine
	(a)	(b)	(c)	(d)	
(1)	(ii)	(i)	(iii)	(iv)	

- (2) (iii) (iv) (ii) (i) (3) (iv) (i) (ii) (iii) (4) (i) (ii) (iv) (iii)
- 76. According to Robert May, the global species diversity is about:
 - (1) 7 million
 - (2) 1.5 million
 - (3) 20 million
 - (4) 50 million
- 77. By which method was a new breed 'Hisardale' of sheep formed by using Bikaneri ewes and Marino rams?
 - (1) Inbreeding
 - (2) Out crossing
 - (3) Mutational breeding
 - (4) Cross breeding

78.	The roots that originate from the base of the stem
	are:

- (1) Lateral roots
- (2) Fibrous roots
- (3) Primary roots
- (4) Prop roots

79. Identify the **wrong** statement with reference to transport of oxygen.

- Low pCO₂ in alveoli favours the formation of oxyhaemoglobin.
- (2) Binding of oxygen with haemoglobin is mainly related to partial pressure of O₂.
- Partial pressure of CO₂ can interfere with O₂ binding with haemoglobin.
- (4) Higher H⁺ conc. in alveoli favours the formation of oxyhaemoglobin.

80. Presence of which of the following conditions in urine are indicative of Diabetes Mellitus?

- (1) Renal calculi and Hyperglycaemia
- (2) Uremia and Ketonuria
- (3) Uremia and Renal Calculi
- (4) Ketonuria and Glycosuria

81. Ray florets have:

- (1) Half inferior ovary
- (2) Inferior ovary
- (3) Superior ovary
- (4) Hypogynous ovary

Name the enzyme that facilitates opening of DNA helix during transcription.

- (1) RNA polymerase
- (2) DNA ligase
- (3) DNA helicase
- (4) DNA polymerase

Identify the wrong statement with regard to Restriction Enzymes.

- Sticky ends can be joined by using DNA ligases.
- (2) Each restriction enzyme functions by inspecting the length of a DNA sequence.
- (3) They cut the strand of DNA at palindromic sites.
- (4) They are useful in genetic engineering.

- 84. Match the trophic levels with their **correct** species examples in grassland ecosystem.
 - (a) Fourth trophic level (i)
 - (i) Crow
 - (b) Second trophic level
- (ii) Vulture
- (c) First trophic level
- (iii) Rabbit
- (d) Third trophic level
- (iv) Grass

Select the correct option:

- (a) (b) (c) (d)
- (1) (i) (ii) (iii) (iv)
- (2) (ii) (iii) (iv) (i)
- (3) (iii) (ii) (i) (iv)
- (4) (iv) (iii) (ii) (i)
- 85. In relation to Gross primary productivity and Net primary productivity of an ecosystem, which one of the following statements is correct?
 - There is no relationship between Gross primary productivity and Net primary productivity.
 - Gross primary productivity is always less than net primary productivity.
 - Gross primary productivity is always more than net primary productivity.
 - (4) Gross primary productivity and Net primary productivity are one and same.

86. Floridean starch has structure similar to:

- Laminarin and cellulose
- (2) Starch and cellulose
- (3) Amylopectin and glycogen
- (4) Mannitol and algin

87. Choose the **correct** pair from the following:

- (1) Exonucleases Make cuts at specific positions within DNA
- (2) Ligases Join the two DNA molecules
- (3) Polymerases Break the DNA into fragments
- (4) Nucleases Separate the two strands of DNA

- 88. Identify the **wrong** statement with reference to the gene 'I' that controls ABO blood groups.
 - (1) Allele 'i' does not produce any sugar.
 - (2) The gene (I) has three alleles.
 - (3) A person will have only two of the three alleles.
 - (4) When I^A and I^B are present together, they express same type of sugar.
- 89. The first phase of translation is:
 - (1) Recognition of an anti-codon
 - (2) Binding of mRNA to ribosome
 - (3) Recognition of DNA molecule
 - (4) Aminoacylation of tRNA
- 90. Which of the following statements is not correct?
 - Genetically engineered insulin is produced in E-Coli.
 - (2) In man insulin is synthesised as a proinsulin.
 - (3) The proinsulin has an extra peptide called C-peptide.
 - (4) The functional insulin has A and B chains linked together by hydrogen bonds.
- **91.** Reaction between acetone and methylmagnesium chloride followed by hydrolysis will give:
 - (1) Isobutyl alcohol
 - (2) Isopropyl alcohol
 - (3) Sec. butyl alcohol
 - (4) Tert. butyl alcohol
- 92. Sucrose on hydrolysis gives:
 - (1) α -D-Fructose + β -D-Fructose
 - (2) β -D-Glucose + α -D-Fructose
 - (3) α-D-Glucose + β-D-Glucose
 - (4) α-D-Glucose + β-D-Fructose

93. A mixture of N_2 and Ar gases in a cylinder contains $7 ext{ g of } N_2$ and $8 ext{ g of Ar}$. If the total pressure of the mixture of the gases in the cylinder is $27 ext{ bar}$, the partial pressure of N_2 is:

[Use atomic masses (in g mol⁻¹): N = 14, Ar = 40]

- (1) 18 bar
- (2) 9 bar
- (3) 12 bar
- (4) 15 bar
- 94. The number of protons, neutrons and electrons in $^{175}_{71}$ Lu, respectively, are:
 - (1) 175, 104 and 71
 - (2) 71, 104 and 71
 - (3) 104, 71 and 71
 - (4) 71, 71 and 104
- 95. On electrolysis of dil.sulphuric acid using Platinum (Pt) electrode, the product obtained at anode will be:
 - (1) SO_2 gas
 - (2) Hydrogen gas
 - (3) Oxygen gas
 - (4) H_2S gas
- 96. Match the following and identify the correct option.
 - (a) $CO(g) + H_2(g)$
- (i) Mg(HCO₃)₂+ Ca(HCO₃)₂
- (b) Temporary hardness of water
- (ii) An electron deficient hydride
- (c) B₂H₆
- (iii) Synthesis gas
- (d) H₂O₂
- (iv) Non-planar structure
- (a) (b) (c) (d)
- (1) (i) (iii) (ii) (iv)
- (2) (iii) (i) (ii) (iv)
- (3) (iii) (ii) (i) (iv)
- (4) (iii) (iv) (ii) (i)
- 97. Measuring Zeta potential is useful in determining which property of colloidal solution?
 - Size of the colloidal particles
 - (2) Viscosity
 - (3) Solubility
 - (4) Stability of the colloidal particles

 Hydrolysis of sucrose is given by the following reaction.

$$\mathbf{Sucrose} + \mathbf{H}_2\mathbf{O} \mathop{\Longrightarrow}\limits_{} \mathbf{Glucose} + \mathbf{Fructose}$$

If the equilibrium constant (K_c) is 2×10^{13} at 300 K, the value of $\Delta_r G^{\odot}$ at the same temperature will be :

- (1) $-8.314 \,\mathrm{J}\,\mathrm{mol}^{-1}\mathrm{K}^{-1} \times 300 \,\mathrm{K} \times \ln(4 \times 10^{13})$
- (2) $-8.314 \,\mathrm{J}\,\mathrm{mol}^{-1}\mathrm{K}^{-1} \times 300 \,\mathrm{K} \times \ln(2 \times 10^{13})$
- (3) $8.314 \,\mathrm{J}\,\mathrm{mol}^{-1}\mathrm{K}^{-1} \times 300 \,\mathrm{K} \times \ln(2 \times 10^{13})$
- (4) $8.314 \,\mathrm{J}\,\mathrm{mol}^{-1}\mathrm{K}^{-1} \times 300 \,\mathrm{K} \times \ln(3 \times 10^{13})$
- 99. The rate constant for a first order reaction is $4.606 \times 10^{-3} \text{ s}^{-1}$. The time required to reduce 2.0 g of the reactant to 0.2 g is:
 - (1) 1000 s
 - (2) 100 s
 - (3) 200 s
 - (4) 500 s
- 100. Anisole on cleavage with HI gives:

(1)
$$+ C_2H_5OH$$

(2)
$$OH$$
 $+ CH_3I$

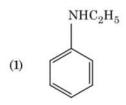
$$(4) \qquad \begin{array}{c} \text{OH} \\ \\ + \text{C}_2\text{H}_5\text{I} \end{array}$$

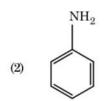
- 101. Reaction between benzaldehyde and acetophenone in presence of dilute NaOH is known as:
 - (1) Cross Aldol condensation
 - (2) Aldol condensation
 - (3) Cannizzaro's reaction
 - (4) Cross Cannizzaro's reaction
- **102.** Which of the following oxoacid of sulphur has -O-O- linkage?
 - (1) H₂S₂O₇, pyrosulphuric acid
 - (2) H₂SO₃, sulphurous acid
 - (3) H₂SO₄, sulphuric acid
 - (4) H₂S₂O₈, peroxodisulphuric acid
- 103. Urea reacts with water to form A which will decompose to form B. B when passed through Cu²⁺ (aq), deep blue colour solution C is formed. What is the formula of C from the following?
 - (1) CuCO₃·Cu(OH)₂
 - (2) CuSO₄
 - (3) [Cu(NH₃)₄]²⁺
 - (4) Cu(OH)₉
- 104. Which of the following is a cationic detergent?
 - (1) Sodium dodecylbenzene sulphonate
 - (2) Sodium lauryl sulphate
 - (3) Sodium stearate
 - (4) Cetyltrimethyl ammonium bromide
- 105. The freezing point depression constant (K_f) of benzene is $5.12 \text{ K kg mol}^{-1}$. The freezing point depression for the solution of molality 0.078 m containing a non-electrolyte solute in benzene is (rounded off upto two decimal places):
 - (1) 0.60 K
 - (2) 0.20 K
 - (3) 0.80 K
 - (4) 0.40 K
- 106. For the reaction, 2Cl(g) → Cl₂(g), the correct option is:
 - (1) $\Delta_r H < 0 \text{ and } \Delta_r S < 0$
 - (2) $\Delta_r H > 0$ and $\Delta_r S > 0$
 - (3) $\Delta_r H > 0$ and $\Delta_r S < 0$
 - (4) $\Delta_r H < 0 \text{ and } \Delta_r S > 0$

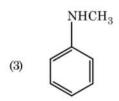
- **107.** An increase in the concentration of the reactants of a reaction leads to change in :
 - (1) collision frequency
 - (2) activation energy
 - (3) heat of reaction
 - (4) threshold energy
- 108. Identify the **correct** statements from the following:
 - (a) CO₂(g) is used as refrigerant for ice-cream and frozen food.
 - (b) The structure of C_{60} contains twelve six carbon rings and twenty five carbon rings.
 - (c) ZSM-5, a type of zeolite, is used to convert alcohols into gasoline.
 - (d) CO is colorless and odourless gas.
 - (1) (c) and (d) only
 - (2) (a), (b) and (c) only
 - (3) (a) and (c) only
 - (4) (b) and (c) only
- 109. Which one of the followings has maximum number of atoms?
 - (1) 1 g of Li(s) [Atomic mass of Li = 7]
 - (2) 1 g of Ag(s) [Atomic mass of Ag = 108]
 - (3) 1 g of Mg(s) [Atomic mass of Mg = 24]
 - (4) $1 \text{ g of } O_2(g) \text{ [Atomic mass of } O = 16]$
- 110. Paper chromatography is an example of:
 - (1) Column chromatography
 - (2) Adsorption chromatography
 - (3) Partition chromatography
 - (4) Thin layer chromatography
- 111. The number of Faradays(F) required to produce 20 g of calcium from molten $CaCl_2$ (Atomic mass of Ca = 40 g mol⁻¹) is:
 - (1) 4
 - (2) 1
 - (3) 2
 - (4) 3

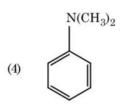
- 112. Identify the incorrect statement.
 - The oxidation states of chromium in CrO₄²⁻
 and Cr₂O₇²⁻ are not the same.
 - (2) $Cr^{2+}(d^4)$ is a stronger reducing agent than $Fe^{2+}(d^6)$ in water.
 - (3) The transition metals and their compounds are known for their catalytic activity due to their ability to adopt multiple oxidation states and to form complexes.
 - (4) Interstitial compounds are those that are formed when small atoms like H, C or N are trapped inside the crystal lattices of metals.
- 113. An element has a body centered cubic (bcc) structure with a cell edge of 288 pm. The atomic radius is:
 - (1) $\frac{4}{\sqrt{2}} \times 288 \text{ pm}$
 - (2) $\frac{\sqrt{3}}{4} \times 288 \text{ pm}$
 - (3) $\frac{\sqrt{2}}{4} \times 288 \text{ pm}$
 - (4) $\frac{4}{\sqrt{3}} \times 288 \text{ pm}$
- 114. Find out the solubility of Ni(OH)₂ in 0.1 M NaOH. Given that the ionic product of Ni(OH)₂ is 2×10^{-15} .
 - (1) $1 \times 10^8 \,\mathrm{M}$
 - (2) $2 \times 10^{-13} \text{ M}$
 - (3) $2 \times 10^{-8} \,\mathrm{M}$
 - (4) $1 \times 10^{-13} \,\mathrm{M}$
- 115. Identify a molecule which does not exist.
 - (1) O₂
 - (2) He₂
 - (3) Li₂
 - (4) C₂
- 116. Which of the following is a basic amino acid?
 - (1) Lysine
 - (2) Serine
 - (3) Alanine
 - (4) Tyrosine

- 117. Which of the following is a natural polymer?
 - (1) poly (Butadiene-acrylonitrile)
 - (2) cis-1,4-polyisoprene
 - (3) poly (Butadiene-styrene)
 - (4) polybutadiene
- 118. Identify the correct statement from the following:
 - Pig iron can be moulded into a variety of shapes.
 - (2) Wrought iron is impure iron with 4% carbon.
 - (3) Blister copper has blistered appearance due to evolution of CO₉.
 - (4) Vapour phase refining is carried out for Nickel by Van Arkel method.
- 119. Which of the following is **not** correct about carbon monoxide?
 - (1) It is produced due to incomplete combustion.
 - (2) It forms carboxyhaemoglobin.
 - (3) It reduces oxygen carrying ability of blood.
 - (4) The carboxyhaemoglobin (haemoglobin bound to CO) is less stable than oxyhaemoglobin.
- 120. Match the following:


	Oxide		Nature
(a)	CO	(i)	Basic
(b)	BaO	(ii)	Neutral
(c)	Al_2O_3	(iii)	Acidic
(d)	Cl_2O_7	(iv)	Amphoteric
****	1 6.1 6 11		


Which of the following is correct option?


	(a)	(b)	(c)	(d)
(1)	(iv)	(iii)	(ii)	(i)
(2)	(i)	(ii)	(iii)	(iv)
(3)	(ii)	(i)	(iv)	(iii)
(4)	(iii)	(iv)	(i)	(ii)


- 121. The following metal ion activates many enzymes, participates in the oxidation of glucose to produce ATP and with Na, is responsible for the transmission of nerve signals.
 - (1) Potassium
 - (2) Iron
 - (3) Copper
 - (4) Calcium

- 122. Which of the following set of molecules will have zero dipole moment?
 - (1) Boron trifluoride, beryllium difluoride, carbon dioxide, 1,4-dichlorobenzene
 - (2) Ammonia, beryllium difluoride, water, 1.4-dichlorobenzene
 - Boron trifluoride, hydrogen fluoride, carbon dioxide, 1,3-dichlorobenzene
 - Nitrogen trifluoride, beryllium difluoride, water, 1,3-dichlorobenzene
- 123. Which of the following amine will give the carbylamine test?

- **124.** A tertiary butyl carbocation is more stable than a secondary butyl carbocation because of which of the following?
 - (1) Hyperconjugation
 - (2) −I effect of −CH₃ groups
 - (3) + Reffect of CH₃ groups
 - (4) −R effect of − CH₃ groups

- 125. Elimination reaction of 2-Bromo-pentane to form pent-2-ene is:
 - (a) β-Elimination reaction
 - (b) Follows Zaitsev rule
 - (c) Dehydrohalogenation reaction
 - (d) Dehydration reaction
 - (1) (a), (b), (d)
 - (2) (a), (b), (c)
 - (3) (a), (c), (d)
 - (4) (b), (c), (d)
- 126. The calculated spin only magnetic moment of ${\rm Cr}^{2+}$ ion is :
 - (1) 2.84 BM
 - (2) 3.87 BM
 - (3) 4.90 BM
 - (4) 5.92 BM
- 127. An alkene on ozonolysis gives methanal as one of the product. Its structure is:

$$(1) \qquad \begin{array}{c} \operatorname{CH_2CH_2CH_3} \\ \end{array}$$

$$CH = CH - CH_3$$
(2)

$$CH_2-CH=CH_2$$
(4)

- 128. Which of the following alkane cannot be made in good yield by Wurtz reaction?
 - (1) n-Butane
 - (2) n-Hexane
 - (3) 2,3-Dimethylbutane
 - (4) n-Heptane
- 129. Identify compound X in the following sequence of reactions:

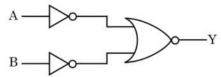
$$\begin{array}{c} \text{CH}_3 \\ \hline \\ \text{Cl}_2/\text{h}\nu \\ \text{X} \\ \hline \\ \hline \\ \text{373 K} \\ \end{array} \begin{array}{c} \text{CHO} \\ \hline \\ \end{array}$$

$$(1) \qquad \bigcirc \\$$

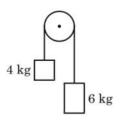
- 130. Which of the following is the correct order of increasing field strength of ligands to form coordination compounds?
 - (1) $CN^- < C_2O_4^{2-} < SCN^- < F^-$
 - (2) $SCN^- < F^- < C_2O_4^{2-} < CN^-$
 - (3) $SCN^- < F^- < CN^- < C_2O_4^{2-}$
 - (4) $F^- < SCN^- < C_2O_4^{2-} < CN^-$
- 131. The mixture which shows positive deviation from Raoult's law is:
 - (1) Chloroethane + Bromoethane
 - (2) Ethanol + Acetone
 - (3) Benzene + Toluene
 - (4) Acetone + Chloroform
- 132. Identify the incorrect match.

Name

IUPAC Official Name


- (a) Unnilunium
- Mendelevium
- (b) Unniltrium
- (ii) Lawrencium
- (c) Unnilhexium
- (iii) Seaborgium
- (d) Unununnium
- (iv) Darmstadtium
- (1) (d), (iv)
- (2) (a), (i)
- (3) (b), (ii)
- (4) (c), (iii)
- 133. The correct option for free expansion of an ideal gas under adiabatic condition is:
 - (1) $q > 0, \Delta T > 0 \text{ and } w > 0$
 - (2) $q = 0, \Delta T = 0 \text{ and } w = 0$
 - (3) $q = 0, \Delta T < 0 \text{ and } w > 0$
 - (4) $q < 0, \Delta T = 0 \text{ and } w = 0$

- 134. HCl was passed through a solution of CaCl₂, MgCl₂ and NaCl. Which of the following compound(s) crystallise(s)?
 - (1) NaCl, MgCl2 and CaCl2
 - (2) Both MgCl2 and CaCl2
 - (3) Only NaCl
 - (4) Only MgCl₂
- 135. What is the change in oxidation number of carbon in the following reaction?


$$CH_4(g) + 4Cl_2(g) \rightarrow CCl_4(l) + 4HCl(g)$$

- (1) 0 to -4
- (2) +4 to +4
- (3) 0 to + 4
- (4) -4 to +4
- 136. A resistance wire connected in the left gap of a metre bridge balances a 10 Ω resistance in the right gap at a point which divides the bridge wire in the ratio 3:2. If the length of the resistance wire is 1.5 m, then the length of 1 Ω of the resistance wire is:
 - (1) $1.5 \times 10^{-2} \,\mathrm{m}$
 - (2) 1.0×10^{-2} m
 - (3) $1.0 \times 10^{-1} \,\mathrm{m}$
 - (4) $1.5 \times 10^{-1} \text{ m}$
- 137. Light of frequency 1.5 times the threshold frequency is incident on a photosensitive material. What will be the photoelectric current if the frequency is halved and intensity is doubled?
 - (1) zero
 - (2) doubled
 - (3) four times
 - (4) one-fourth

138. For the logic circuit shown, the truth table is:

- (1) A B Y 0 0 1 0 1 0 1 0 0
- 1 1 0 (2)A В Y 0 0 0 0 1 0 1 0 0 1 1 1
- A В Y (3) 0 0 0 0 1 1 1 0 1 1 1 1
- (4) A B Y
 0 0 1
 0 1 1
 1 0 1
 1 1 0
- 139. Two bodies of mass 4 kg and 6 kg are tied to the ends of a massless string. The string passes over a pulley which is frictionless (see figure). The acceleration of the system in terms of acceleration due to gravity (g) is:

- (1) g/10
- (2) g
- (3) g/2
- (4) g/5

- 140. An electron is accelerated from rest through a potential difference of V volt. If the de Broglie wavelength of the electron is 1.227×10^{-2} nm, the potential difference is:
 - (1) $10^4 \, \text{V}$
 - (2) 10 V
 - (3) $10^2 \,\mathrm{V}$
 - (4) $10^3 \, \text{V}$
- 141. Assume that light of wavelength 600 nm is coming from a star. The limit of resolution of telescope whose objective has a diameter of 2 m is:
 - (1) $6.00 \times 10^{-7} \, \text{rad}$
 - (2) $3.66 \times 10^{-7} \, \text{rad}$
 - (3) $1.83 \times 10^{-7} \, \text{rad}$
 - (4) $7.32 \times 10^{-7} \text{ rad}$
- 142. A short electric dipole has a dipole moment of 16×10^{-9} C m. The electric potential due to the dipole at a point at a distance of 0.6 m from the centre of the dipole, situated on a line making an angle of 60° with the dipole axis is:

$$\left(\frac{1}{4\pi\epsilon_0} = 9 \times 10^9 \text{ N m}^2/\text{C}^2\right)$$

- (1) zero
- (2) 50 V
- (3) 200 V
- (4) 400 V
- 143. The increase in the width of the depletion region in a p-n junction diode is due to:
 - (1) increase in forward current
 - (2) forward bias only
 - (3) reverse bias only
 - (4) both forward bias and reverse bias
- 144. A 40 μF capacitor is connected to a 200 V, 50 Hz ac supply. The rms value of the current in the circuit is, nearly:
 - (1) 25.1 A
 - (2) 1.7 A
 - (3) 2.05 A
 - (4) 2.5 A

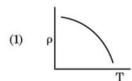
- 145. The average thermal energy for a mono-atomic gas is : $(k_B$ is Boltzmann constant and T, absolute temperature)
 - (1) $\frac{7}{2}$ k_BT
 - (2) $\frac{1}{2} k_B T$
 - (3) $\frac{3}{2} k_B T$
 - $(4) \qquad \frac{5}{2} \, k_B T$
- 146. Taking into account of the significant figures, what is the value of 9.99 m 0.0099 m?
 - (1) 9.9 m
 - (2) 9.9801 m
 - (3) 9.98 m
 - (4) 9.980 m
- 147. In a guitar, two strings A and B made of same material are slightly out of tune and produce beats of frequency 6 Hz. When tension in B is slightly decreased, the beat frequency increases to 7 Hz. If the frequency of A is 530 Hz, the original frequency of B will be:
 - (1) 537 Hz
 - (2) 523 Hz
 - (3) 524 Hz
 - (4) 536 Hz
- 148. When a uranium isotope $^{235}_{92}$ U is bombarded with a neutron, it generates $^{89}_{36}$ Kr, three neutrons and:
 - (1) $^{103}_{36}$ Kr
 - (2) 144 Ba
 - (3) $^{91}_{40}$ Zr
 - (4) $^{101}_{36}$ Kr
- 149. Dimensions of stress are:
 - (1) $[ML^{-1}T^{-2}]$
 - (2) $[MLT^{-2}]$
 - (3) $[ML^2T^{-2}]$
 - (4) $[ML^0T^{-2}]$

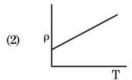
- 150. The mean free path for a gas, with molecular diameter d and number density n can be expressed as:
 - (1) $\frac{1}{\sqrt{2} n^2 \pi^2 d^2}$
 - (2) $\frac{1}{\sqrt{2} n\pi d}$
 - (3) $\frac{1}{\sqrt{2} \text{ n}\pi d^2}$
 - (4) $\frac{1}{\sqrt{2} n^2 \pi d^2}$
- 151. Light with an average flux of 20 W/cm² falls on a non-reflecting surface at normal incidence having surface area 20 cm². The energy received by the surface during time span of 1 minute is:
 - (1) $48 \times 10^3 \,\text{J}$
 - (2) $10 \times 10^3 \,\text{J}$
 - (3) $12 \times 10^3 \,\text{J}$
 - (4) $24 \times 10^3 \,\text{J}$
- 152. The energy required to break one bond in DNA is 10^{-20} J. This value in eV is nearly :
 - (1) 0.006
 - (2) 6
 - (3) 0.6
 - (4) 0.06
- 153. A spherical conductor of radius 10 cm has a charge of 3.2×10⁻⁷ C distributed uniformly. What is the magnitude of electric field at a point 15 cm from the centre of the sphere?

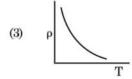
$$\left(\frac{1}{4\pi\epsilon_0} = 9 \times 10^9 \text{ N m}^2/\text{C}^2\right)$$

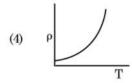
- (1) $1.28 \times 10^7 \text{ N/C}$
- (2) $1.28 \times 10^4 \text{ N/C}$
- (3) $1.28 \times 10^5 \text{ N/C}$
- (4) 1.28 × 10⁶ N/C

- 154. A ray is incident at an angle of incidence i on one surface of a small angle prism (with angle of prism A) and emerges normally from the opposite surface. If the refractive index of the material of the prism is μ, then the angle of incidence is nearly equal to:
 - (1) $\frac{\mu A}{2}$
 - (2) $\frac{A}{2\mu}$
 - (3) $\frac{2A}{\mu}$
 - (4) μA
- 155. The solids which have the negative temperature coefficient of resistance are:
 - (1) insulators and semiconductors
 - (2) metals
 - (3) insulators only
 - (4) semiconductors only
- 156. A long solenoid of 50 cm length having 100 turns carries a current of 2.5 A. The magnetic field at the centre of the solenoid is:


$$(\mu_0 = 4\pi \times 10^{-7} \text{ T m A}^{-1})$$

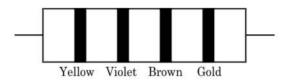

- (1) $3.14 \times 10^{-5} \,\mathrm{T}$
- (2) $6.28 \times 10^{-4} \,\mathrm{T}$
- (3) $3.14 \times 10^{-4} \text{ T}$
- (4) $6.28 \times 10^{-5} \,\mathrm{T}$
- 157. In a certain region of space with volume 0.2 m³, the electric potential is found to be 5 V throughout. The magnitude of electric field in this region is:
 - (1) 5 N/C
 - (2) zero
 - (3) 0.5 N/C
 - (4) 1 N/C
- 158. The Brewsters angle i_b for an interface should be:
 - (1) $i_b = 90^{\circ}$
 - (2) $0^{\circ} < i_b < 30^{\circ}$
 - (3) $30^{\circ} < i_b < 45^{\circ}$
 - (4) $45^{\circ} < i_b < 90^{\circ}$


159. The capacitance of a parallel plate capacitor with air as medium is 6 μ F. With the introduction of a dielectric medium, the capacitance becomes 30 μ F. The permittivity of the medium is:


$$(\epsilon_0 = 8.85 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2})$$

- (1) $5.00 \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$
- (2) $0.44 \times 10^{-13} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$
- (3) $1.77 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$
- (4) $0.44 \times 10^{-10} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$
- 160. The phase difference between displacement and acceleration of a particle in a simple harmonic motion is:
 - (1) zero
 - (2) π rad
 - (3) $\frac{3\pi}{2}$ rad
 - (4) $\frac{\pi}{2}$ rad
- 161. A charged particle having drift velocity of 7.5×10^{-4} m s⁻¹ in an electric field of 3×10^{-10} Vm⁻¹, has a mobility in m² V⁻¹ s⁻¹ of:
 - (1) 2.25×10^{-15}
 - (2) 2.25×10^{15}
 - (3) 2.5×10^6
 - (4) 2.5×10^{-6}
- 162. Which of the following graph represents the variation of resistivity (ρ) with temperature (T) for copper?

163. An iron rod of susceptibility 599 is subjected to a magnetising field of 1200 A m $^{-1}$. The permeability of the material of the rod is:


$$(\mu_0 = 4\pi \times 10^{-7} \text{ T m A}^{-1})$$

- (1) $2.4\pi \times 10^{-7} \text{ T m A}^{-1}$
- (2) $2.4\pi \times 10^{-4} \text{ T m A}^{-1}$
- (3) $8.0 \times 10^{-5} \,\mathrm{T}\,\mathrm{m}\,\mathrm{A}^{-1}$
- (4) $2.4\pi \times 10^{-5} \,\mathrm{T} \,\mathrm{m} \,\mathrm{A}^{-1}$
- 164. Two particles of mass 5 kg and 10 kg respectively are attached to the two ends of a rigid rod of length 1 m with negligible mass.

The centre of mass of the system from the 5 kg particle is nearly at a distance of:

- (1) 80 cm
- (2) 33 cm
- (3) 50 cm
- (4) 67 cm
- **165.** For transistor action, which of the following statements is **correct**?
 - The base region must be very thin and lightly doped.
 - (2) Base, emitter and collector regions should have same doping concentrations.
 - (3) Base, emitter and collector regions should have same size.
 - (4) Both emitter junction as well as the collector junction are forward biased.
- 166. Find the torque about the origin when a force of $3\,\hat{j}\,$ N acts on a particle whose position vector is $2\,\hat{k}\,$ m .
 - (1) $6\hat{k}$ N m
 - (2) 6 î N m
 - (3) $6\hat{j}$ N m
 - (4) $-6\hat{i}$ N m

167. The color code of a resistance is given below:

The values of resistance and tolerance, respectively, are:

- (1) $470 \Omega, 5\%$
- (2) $470 \text{ k}\Omega, 5\%$
- (3) $47 \text{ k}\Omega, 10\%$
- (4) $4.7 \text{ k}\Omega, 5\%$
- 168. A ball is thrown vertically downward with a velocity of 20 m/s from the top of a tower. It hits the ground after some time with a velocity of 80 m/s. The height of the tower is: $(g=10 \text{ m/s}^2)$
 - (1) 300 m
 - (2) 360 m
 - (3) 340 m
 - (4) 320 m
- 169. A capillary tube of radius r is immersed in water and water rises in it to a height h. The mass of the water in the capillary is 5 g. Another capillary tube of radius 2r is immersed in water. The mass of water that will rise in this tube is:
 - (1) 20.0 g
 - (2) 2.5 g
 - (3) 5.0 g
 - (4) 10.0 g
- 170. The energy equivalent of 0.5 g of a substance is:
 - (1) $0.5 \times 10^{13} \,\text{J}$
 - (2) $4.5 \times 10^{16} \,\mathrm{J}$
 - (3) $4.5 \times 10^{13} \,\mathrm{J}$
 - (4) $1.5 \times 10^{13} \,\mathrm{J}$
- 171. Two cylinders A and B of equal capacity are connected to each other via a stop cock. A contains an ideal gas at standard temperature and pressure. B is completely evacuated. The entire system is thermally insulated. The stop cock is suddenly opened. The process is:
 - (1) isobaric
 - (2) isothermal
 - (3) adiabatic
 - (4) isochoric

172. A screw gauge has least count of 0.01 mm and there are 50 divisions in its circular scale.

The pitch of the screw gauge is:

- (1) 1.0 mm
- (2) 0.01 mm
- (3) 0.25 mm
- (4) 0.5 mm
- 173. In Young's double slit experiment, if the separation between coherent sources is halved and the distance of the screen from the coherent sources is doubled, then the fringe width becomes:
 - (1) one-fourth
 - (2) double
 - (3) half
 - (4) four times
- 174. A body weighs 72 N on the surface of the earth. What is the gravitational force on it, at a height equal to half the radius of the earth?
 - (1) 24 N
 - (2) 48 N
 - (3) 32 N
 - (4) 30 N
- 175. The ratio of contributions made by the electric field and magnetic field components to the intensity of an electromagnetic wave is: (c = speed of electromagnetic waves)
 - (1) $1:c^2$
 - (2) c:1
 - (3) 1:1
 - (4) 1:c
- 176. The quantities of heat required to raise the temperature of two solid copper spheres of radii r_1 and r_2 (r_1 =1.5 r_2) through 1 K are in the ratio:
 - (1) $\frac{5}{3}$
 - (2) $\frac{27}{8}$
 - (3) $\frac{9}{4}$
 - (4) $\frac{3}{2}$

- 177. A series LCR circuit is connected to an ac voltage source. When L is removed from the circuit, the phase difference between current and voltage is $\frac{\pi}{3}$. If instead C is removed from the circuit, the phase difference is again $\frac{\pi}{3}$ between current and voltage. The power factor of the circuit is:
 - (1) -1.0
 - (2) zero
 - (3) 0.5
 - (4) 1.0
- 178. A cylinder contains hydrogen gas at pressure of 249 kPa and temperature 27°C.

Its density is: $(R = 8.3 \text{ J mol}^{-1} \text{ K}^{-1})$

- (1) 0.02 kg/m^3
- (2) 0.5 kg/m^3
- (3) 0.2 kg/m^3
- (4) 0.1 kg/m^3
- 179. A wire of length L, area of cross section A is hanging from a fixed support. The length of the wire changes to L_1 when mass M is suspended from its free end. The expression for Young's modulus is:
 - (1) $\frac{\text{MgL}}{\text{A(L_1 L)}}$
 - (2) $\frac{\text{MgL}_1}{\text{AL}}$
 - (3) $\frac{\text{Mg}(L_1 L)}{\text{AL}}$
 - (4) $\frac{\text{MgL}}{\text{AL}_1}$
- **180.** For which one of the following, Bohr model is **not** valid?
 - (1) Singly ionised neon atom (Ne+)
 - (2) Hydrogen atom
 - (3) Singly ionised helium atom (He +)
 - (4) Deuteron atom

23 Space For Rough Work **H6**